plete

The
Com
Reference

592 C++: The Complete Reference

conversion functions, explicit constructors, const and volatile member functions,
the asm keyword, and linkage specifications. It ends with a discussion of C++'s
array-based I/O and a summary of the differences between C and C++.

This chapter describes namespaces and several other advanced features, including

__| Namespaces

Namespaces were briefly introduced earlier in this book. They are a relatively recent
addition to C++. Their purpose is to localize the names of identifiers to avoid name
collisions. The C++ programming environment has seen an explosion of variable,
function, and class names. Prior to the invention of namespaces, all of these names
competed for slots in the global namespace and many conflicts arose. For example, if
your program defined a function called abs(), it could (depending upon its parameter
list) override the standard library function abs() because both names would be stored
in the global namespace. Name collisions were compounded when two or more
third-party libraries were used by the same program. In this case, it was possible—
even likely—that a name defined by one library would conflict with the same name
defined by the other library. The situation can be particularly troublesome for class
names. For example, if your program defines a class call ThreeDCircle and a library
used by your program defines a class by the same name, a conflict will arise.

The creation of the namespace keyword was a response to these problems. Because
it localizes the visibility of names declared within it, a namespace allows the same name
to be used in different contexts without conflicts arising. Perhaps the most noticeable
beneficiary of namespace is the C++ standard library. Prior to namespace, the entire
C++ library was defined within the global namespace (which was, of course, the only
namespace). Since the addition of namespace, the C++ library is now defined within
its own namespace, called std, which reduces the chance of name collisions. You can
also create your own namespaces within your program to localize the visibility of any
names that you think may cause conflicts. This is especially important if you are creating
class or function libraries.

Namespace Fundamentals

The namespace keyword allows you to partition the global namespace by creating
a declarative region. In essence, a namespace defines a scope. The general form of
namespace is shown here:

namespace narme {
/ / declarations

}

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

Anything defined within a namespace statement is within the scope of that namespace.

Here is an example of a namespace. It localizes the names used to implement a
simple countdown counter class. In the namespace are defined the counter class, which
implements the counter, and the variables upperbound and lowerbound, which contain
the upper and lower bounds that apply to all counters.

namespace CounterNameSpace {
int upperbound;
int lowerbound;

class counter {
int count;
public:
counter (int n) {
if (n <= upperbound) count

1}
s

else count = upperbound;

void reset(int n) {
if (n <= upperbound) count = n;

int run() {
1f {count > lowerbound) return count--;
else return lowerbound;

Here, upperbound, lowerbound, and the class counter are part of the scope defined by
the CounterNameSpace namespace.

Inside a namespace, identifiers declared within that namespace can be referred to
directly, without any namespace qualification. For example, within CounterNameSpace,
the run() function can refer directly to lowerbound in the statement

I if (count > lowerbound) return count--;

However, since namespace defines a scope, you need to use the scope resolution
operator to refer to objects declared within a namespace from outside that namespace.

C++: The Complete Reference

For example, to assign the value 10 to upperbound from code outside
CounterNameSpace, you must use this statement:

I CounterNameSpace: :upperbound = 10;

Or to declare an object of type counter from outside CounterNameSpace, you will use
a statement like this:

l CounterNameSpace: :counter ob;

In general, to access a member of a namespace from outside its namespace, precede
the member's name with the name of the namespace followed by the scope resolution
operator.

Here is a program that demonstrates the use of CounterNameSpace.

// Demonstrate a namespace.
#include <iostream>
using namespace std;

namespace CounterNameSpace {
int upperbound;
int lowerbound;

class counter {

int count;
public:

counter (int n) {

if(n <= upperbound) count = n;
else count = upperbound;

}

void reset (int n) {
if(n <= upperbound) count = n;

int run() {
if (count > lowerbound) return count--;
else return lowerbound;

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

int main{)

{
CounterNameSpace: :upperbound = 100;
CounterNameSpace: : lowerbound = 0;

CounterNameSpace: :counter obl(10);

int 1i;

do {
i = obl.run();
cout << 1 << " *;
} while(i > CounterNameSpace::lowerbound};

cout << endl;

CounterNameSpace: :counter ob2{(20);

i = cbh2.run();
cout << i << " ";
} while (i > CounterNameSpace::lowerbound) ;

cout << endl;

ob2.reset (100);
CounterNameSpace: : lowerbound = 90;
do {

i = cob2.run();

cout << 1 << ;

} while(i > CounterNameSpace::lowerbound) ;

returr. 0;

Notice that the declaration of a counter object and the references to upperbound
and lowerbound are qualified by CounterNameSpace. However, once an object of
type counter has been declared, it is not necessary to further qualify it or any of its
members. Thus, obl.run() can be called directly; the namespace has already been
resolved.

C++: The Complete Reference

using
As you can imagine, if your program includes frequent references to the members
of a namespace, having to specify the namespace and the scope resolution operator
each time you need to refer to one quickly becomes a tedious chore. The using
statement was invented to alleviate this problem. The using statement has these
two general forms:

using namespace name;
using name::member;

In the first form, name specifies the name of the namespace you want to access. All of
the members defined within the specified namespace are brought into view (i.e., they
become part of the current namespace) and may be used without qualification. In the
second form, only a specific member of the namespace is made visible. For example,
assuming CounterNameSpace as shown above, the following using statements and
assignments are valid.

using CounterNameSpace::lowerbound; // only lowerbound is visible
lowerbound = 10; // OK because lowerbound is visible

using namespace CounterNameSpace; // all members are visible
upperbound = 100; // OK because all members are now visible

The following program illustrates using by reworking the counter example from
the previous section.

// Demonstrate using.
#include <iostream>
using namespace std;

namespace CounterNameSpace {
int upperbound;
int lowerbound;

class counter {
int count;
public:
counter (int n) {
if(n <= upperbound) count = n;
else count = upperbound;

Chapter 23:

Namespaces, Conversion Functions, and Other Advanced Topics

void reset{int n) {

if (n <= upperbound) count = n;

run{) {
if (count > lowerbound)

int
return count--;

else return lowerbound;

int main{()

{

// use only upperbound from CounterNameSpace
using CounterNameSpace: :upperbound;

// now, no gualification needed to set upperbound

upperbound = 100;

// qualification still needed for lowerbound, etc.

CounterNameSpace

CounterNameSpace:

int 1i;

do {
1 = obl.run();

cout << 1 << "

::lowerbound = 0;

:counter obl(10);

"o
‘

} while(i > CounterNameSpace::lowerbound) ;

cout << endl;

// now,

use entire CounterNameSpace

using namespace CounterNameSpace;

counter o0b2(20);

do {
i = ¢bZirun();

cout << 1 << "

"o,
7

} while(i > lowerbound) ;

cout << endl;

ob2.reset (100) ;

- 597

C++: The Complete Reference

lowerbound = 90;
do {
i = ob2.run();

cout << 1 <<

} while(i > lowerbound) ;

return 0;

The program illustrates one other important point: using one namespace does not
override another. When you bring a namespace into view, it simply adds its names

to whatever other namespaces are currently in effect. Thus, by the end of the program,
both std and CounterNameSpace have been added to the global namespace.

Unnamed Namespaces

There is a special type of namespace, called an unnamed namespace, that allows you to
create identifiers that are unique within a file. Unnamed namespaces are also called
anonymous namespaces. They have this general form:

namespace {
/ / declarations

!

Unnamed namespaces allow you to establish unique identifiers that are known only
within the scope of a single file. That is, within the file that contains the unnamed
namespace, the members of that namespace may be used directly, without qualification.
But outside the file, the identifiers are unknown.

Unnamed namespaces eliminate the need for certain uses of the static storage class
modifier. As explained in Chapter 2, one way to restrict the scope of a global name to
the file in which it is declared is to use static. For example, consider the following two
files that are part of the same program.

File One File Two
static int k; extern int k;
void £1() { void £2() {
k =99; // OK k = 10; // error

Because k is defined in File One, it may be used in File One. In File Two, k is specified
as extern, which means that its name and type are known but that k itself is not actually

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

defined. When these two files are linked, the attempt to use k within File Two results in
an error because there is no definition for k. By preceding k with static in File One, its
scope is restricted to that file and it is not available to File Two.

While the use of static global declarations is still allowed in C++, a better way to
accomplish the same effect is to use an unnamed namespace. For example:

File One File Two
namespace { extern int k;
int k; void f£2() {
} k = 10; // error
void £1() { }
k = 99; // OK
}

Here, k is also restricted to File One. The use of the unnamed namespace rather than
static is recommended for new code.

Some Namespace Options

There may be more than one namespace declaration of the same name. This allows
a namespace to be split over several files or even separated within the same file.
For example:

#include <iostream>

using namespace std;
namespace NS {
int 1;
//
namespace NS {

int 3;

int main(}
{
NS::1 = NS::j = 10;

// refer to NS specifically

C++: The Complete Reference

cout << NS::1i * NS::j << "\n";

// use NS namespace
using namespace NS;

cout << i * 3;

return 0;

This program produces the following output:

100
100

Here, NS is split into two pieces. However, the contents of each piece are still within
the same namespace, that is, NS.

A namespace must be declared outside of all other scopes. This means that you
cannot declare namespaces that are localized to a function, for example. There is,
however, one exception: a namespace can be nested within another. Consider

this program:

#include <iostream>
using namespace std;

namespace NS1 {
int 1i;
namespace NS2 { // a nested namespace
int j;

int main()

{
NSl::1 = 19;
// NS2::j = 10; Error, NS2 is not in view
NS1::NS2::3 = 10; // this is right

cout << NS1::1 << " "<< NS1::NS2::j << "\n"

// use NS1

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

using namespace NS1;
/* Now that NS1 is in view, NS2 can be used tc
refer to j. */

cout << 1 * NS2::73;

return 0;

This program produces the following output:

i9 10
150

Here, the namespace NS2 is nested within NS1. Thus, when the program begins, to
refer to j, you must qualify it with both the NS1 and NS2 namespaces. NS2 by itself
is insufficient. After the statement

i
using namespace NS1;

executes, you can refer directly to NS2 since the using statement brings NS1 into view.
Typically, you will not need to create namespaces for most small to medium-sized

programs. However, if you will be creating libraries of reusable code or it you want to

ensure the widest portability, then consider wrapping your code within a namespace.

Qo

The std Namespace

Standard C++ defines its entire library in its own namespace called std. This is the
reason that most of the programs in this book include the following statement:

i
§ using namespace std;

This causes the std namespace to be brought into the current namespace, which gives
vou direct access to the names of the functions and classes defined within the library
without having to qualify each one with std::.

Of course, you can explicitly qualify each name with std:: if you like. For example,
the following program does not bring the library into the global namespace.

o
&g // Use explicit std:: qualification.
?u:z 4

601

602

C++: The Complete Reference

#include <iostream>

int main{)

{

int val;
std::cout << "Enter a number: ";

std::cin >> val;
std::cout << "This is your number: “;
std::cout << std::hex << val;

return 0;

Here, cout, cin, and the manipulator hex are explicitly qualified by their namespace.
That is, to write to standard output, you must specify std::cout; to read from standard
input, you must use std::cin; and the hex manipulator must be referred to as std::hex.

You may not want to bring the standard C++ library into the global namespace if
your program will be making only limited use of it. However, if your program contains
hundreds of references to library names, then including std in the current namespace is
far easier than qualifying each name individually.

If you are using only a few names from the standard library, it may make more sense
to specify a using statement for each individually. The advantage to this approach is that
you can still use those names without an std:: qualification, but you will not be bringing
the entire standard library into the global namespace. For example:

// Bring only a few names into the global namespace.
#include <iostreamn>

// gain access to cout, cin, and hex
using std::cout;
using std::cin;
using std::hex;

int main()
{

int val;

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

|

cout << "Enter a number: ";

cin >> val;
cout << "This is your number: “;
cout << hex << wval;

return 0;

Here, cin, cout, and hex may be used directly, but the rest of the std namespace has not
been brought into view.

As explained, the original C++ library was defined in the global namespace. If you
will be converting older C++ programs, then you will need to either include a using
namespace std statement or qualify each reference to a library member with std::. This
is especially important if you are replacing old .H header files with the new-style headers.
Remember, the old .H headers put their contents into the global namespace; the new-style
headers put their contents into the std namespace.

Creating Conversion Functions

In some situations, you will want to use an object of a class in an expression involving
other types of data. Sometimes, overloaded operator functions can provide the means
of doing this. However, in other cases, what you want is a simple type conversion from
the class type to the target type. To handle these cases, C++ allows you to create custom
conrversion functions. A conversion function converts your class into a type compatible
with that of the rest of the expression. The general format of a type conversion function is

operator type() { return value; |

Here, type is the target type that you are converting your class to, and value is the value
of the class after conversion. Conversion functions return data of type type, and no other
return type specifier is allowed. Also, no parameters may be included. A conversion
function must be a member of the class for which it is defined. Conversion functions
are inherited and they may be virtual.

The following illustration of a conversion function uses the stack class first
developed in Chapter 11. Suppose that you want to be able to use objects of type stack
within an integer expression. Further, suppose that the value of a stack object used in
an integer expression is the number of values currently on the stack. (You might want

603

604

C++: The Complete Reference

to do something like this if, for example, you are using stack objects in a simulation
and are monitoring how quickly the stacks fill up.) One way to approach this is to
convert an object of type stack into an integer that represents the number of items
on the stack. To accomplish this, you use a conversion function that looks like this:

operator int{) { return tos; }
Here is a program that illustrates how the conversion function works:

#include <iostream>
using namespace std;

const int SIZE=100;

// this creates the class stack
class stack {
int stck[SIZE];
int tos;
public:
stack() { tos=0; }
void push(int 1i);
int pop(void) ;
operator int() { return tos; } // conversion of stack to int
}i

void stack::push(int i)
{
if(tos==8IZE) {
cout << "Stack is full.\n";
return;
}
stckltos] = 1i;
tos++;

int stack::pop()
{
if(tos==0) ({
cout << "Stack underflow.\n";
return 0;

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

tos—--;
return stckltos];

int main()
{
stack stck;

int i, 3;

for(i=0; i<20; i++) stck.push(1i);

j = stck; // convert to integer

cout << j << " items on stack.\n";

cout << 3SIZE - stck << " spaces open.\n";
return 0;

This program displays this output:

20 items on stack.
80 spaces open.

As the program illustrates, when a stack object is used in an integer expression,
such as j = stck, the conversion function is applied to the object. In this specific case,
the conversion function returns the value 20. Also, when stck is subtracted from SIZE,
the conversion function is also called.

Here is another example of a conversion function. This program creates a class called
pwr() that stores and computes the outcome of some number raised to some power. It
stores the result as a double. By supplying a conversion function to type double and
returning the result, you can use objects of type pwr in expressions involving other
double values.

#include <iostream>

using namespace std;

class pwr {
double b;
int e;
double val;

605

606

C++: The Complete Reference

public:
pwr (double base, int exp);
pwr operator+ (pwr o) {
double base;

int exp;
base = b + 0.b;
exp = e + 0.e;

pwr temp (base, exp);
return temp;

}

pwr: :pwr (double base, int exp)

b = base;
e = exp;
val = 1;

if (exp==0) returr;
for{ ; exp>0; exp--) val = val = b;

int main()
{
pwr x(4.0, 2);
double a;
a = x; // cenvert to double
cout << "\n";
pwr v(3.3, 3), z{0, 0);
z = x + vy; // no conversion
a = z; // convert to double

cout << aj

return 0;

operator double() { return val; } //

convert to double

cout << x + 100.2; // convert x to double and add 100.2

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 607

The output from the program is shown here.

116.2
20730.7

As you can see, when x is used in the expression x + 100.2, the conversion function is
used to produce the double value. Notice also that in the expression x + y, no conversion
is applied because the expression involves only objects of type pwr.

As you can infer from the foregoing examples, there are many situations in which
it is beneficial to create a conversion function for a class. Often, conversion functions
provide a more natural syntax to be used when class objects are mixed with the built-in
types. Specifically, in the case of the pwr class, the availability of the conversion to
double makes using objects of that class in "normal” mathematical expressions both
easier to program and easier to understand.

You can create different conversion functions to meet different needs. You could
define another that converts to long, for example. Each will be applied automatically
as determined by the type of each expression.

__J const Member Functions and mutable

Class member functions may be declared as const, which causes this to be treated as a
const pointer. Thus, that function cannot modify the object that invokes it. Also, a const
object may not invoke a non-const member function. However, a const member function
can be called by either const or non-const objects.

To specify a member function as const, use the form shown in the following
example.

class X {
int some_var;
public:

int f1() const; // const member function

b

As you can see, the const follows the function’s parameter declaration.
The purpose of declaring a member function as const is to prevent it from modifying
the object that invokes it. For example, consider the following program.

Demonstrate const member functions.

608 C++: The Complete Reference

This program won't compile.
*/
#include <iostream>
using namespace std;

class Demo {
int i;
public:
int geti() const {
return i; // ok

void seti{(int x) const {
i =x; // error!

int main()

{

Demo ob;

ob.seti (1900);
cout << ob.geti{);

return 0;

This program will not compile because seti() is declared as const. This means that it is not
allowed to modify the invoking object. Since it attempts to change i, the program is in
error. In contrast, since geti() does not attempt to modify i, it is perfectly acceptable.

Sometimes there will be one or more members of a class that you want a const
function to be able to modify even though you don't want the function to be able to
modify any of its other members. You can accomplish this through the use of mutable.
It overrides constness. That is, a mutable member can be modified by a const member
function. For example:

// Demonstrate mutable.
#include <iostream>
using namespace sud;

class Demo {

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 609

mutable int i;
int j;
public:
int geti() const {
return i; // ok

void seti(int x) const {
i = x; // now, OK.

/* The following function won't compile.
void setj(int x) const {
3 = x; // Still Wrong!

int main{)
{

Demo ob;

ob.seti(1900);
cout << ob.geti();

return O;

Here, i is specified as mutable, so it may be changed by the seti() runction. However,
j is not mutable and setj() is unable to modify its value.

___] volatile Member Functions

Class member functions may be declared as volatile, which causes this to be treated as
a volatile pointer. To specify a member function as volatile, use the form shown in the
following example:

class X {
public:
void f2(int a) volatile; // volatile member function

Y

610 C++: The Complete Reference

___| Explicit Constructors

As explained in Chapter 12, any time you have a constructor that requires only one
argument, you can use either ob(x) or ob = x to initialize an object. The reason for this is
that whenever you create a constructor that takes one argument, you are also implicitly
creating a conversion from the type of that argument to the type of the class. But there
may be times when you do not want this automatic conversion to take place. For this
purpose, C++ defines the keyword explicit. To understand its effects, consider the
following program.

#include <iostream>
using namespace std;

class myclass {
int a;

public:
myclass(int x) { a = x; }
int geta() { return a; }

}i
int main{()
{
myclass ob = 4; // automatically converted into myclass(4)

cout << ob.getal();

return 0;

Here, the constructor for myclass takes one parameter. Pay special attention to how
ob is declared in main(). The statement

myclass ob = 4; // automatically converted into myclass(4)

is automatically converted into a call to the myclass constructor with 4 being the
argument. That is, the preceding statement is handled by the compiler as if it were
written like this:

myclass ob(4);

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

If you do not want this implicit conversion to be made, you can prevent it by using
explicit. The explicit specifier applies only to constructors. A constructor specified
as explicit will only be used when an initialization uses the normal constructor syntax.
It will not perform any automatic conversion. For example, by declaring the myclass
constructor as explicit, the automatic conversion will not be supplied. Here is myclass()
declared as explicit.

#include <iostreamnm>

using namespace std;

class myclass {

int a;

public:
explicit myclass(int x) { a = x:; }
int geta() { return a; }

}i

myclass ob(4);
will be allowed and a statement like
myclass ob = 4; // now 1in error

will be invalid.

The Member Initialization Syntax

Example code throughout the preceding chapters has initialized member variables
inside the constructor for their class. For example, the following program contains the
MyClass class, which has two integer data members called numA and numB. These
member variables are initialized inside MyClass’ constructor.

#include <iostream>
using namespace std;

611

612 C++: The Complete Reference

class MyClass {
int numA;
int numB;
public:
/* Initialize numA and numBR inside the MyClass constructor
using normal syntax. */

MyClass(int x, int y) {
NUumA = X;
numB = y;

int getNumA() { return numd; }
int getNumB() { return numB; }
Y

int main()
{ .
MyClass obl(7, 9), ob2(5, 2);

cout << "Values in obl are " << obl.getNumB() <<
" and " << obl.getNumA() << endl;

cout << "Values in ob2 are " << ob2.getNumB() <<
" and " << ob2.getNumA() << endl;

return 0;

Assigning initial values to member variables numA and numB inside the constructor,

as MyClass() does, is the usual approach, and is the way that member initialization is
accomplished for many, many classes. However, this approach won’t work in all cases.
For example, if numA and numB were specified as const, like this

class MyClass {
const int numd; // const member
const int numB; // const member

then they could not be given values by the MyClass constructor because const
variables miust be initialized and cannot be assigned values after the fact. Similar
problems arise when using reference members, which must be initialized, and when
using class members that don’t have default constructors. To solve these types of

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

problems, C++ supports an alternative member initialization syntax, which is used to
give a class member an initial value when an object of the class is created.

The member initialization syntax is similar to that used to call a base class
constructor. Here is the general form:

constructor(arg-list) : member1(initializer),
member2(initializer),
/] ..
memberN(initializer)
{
/ / body of constructor

}

The members that you want to initialize are specified before the body of the constructor,
separated from the constructor’s name and argument list by a colon. You can mix calls
to base class constructors with member initializations in the same list.

Here is MyClass rewritten so that numA and numB are const members that are
given values using the member initialization syntax.

#include <iostream>

using namespace std;

class MyClass {
const int numA; // const member
const int numB; // const member
public:
// Initialize numA and numB using initialization syntax.
MyClass (int x, int y) : numA (x), numB(y) { }

int getNumA() { return numh; }
int getNumB() { return numB; }

}i

int main()

{
MyClass obl(7, 9), ob2(5, 2);

cout << "Values in obl are " << obl.getNumB() <<
" and " << obl.getNumA() << endl;

cout << "Values in ocb2 are " << ob2.getNumB() <<
" and " << ob2.getNumA() << endl;

return 0O;

613

614

C++: The Complete Reference

Notice how numA and numB are initialized by this statement:
I MyClass(int x, int y) : numA(x), numB(y) { }

Here, numaA is injtialized with the value passed in x, and numB is initialized with the
value passed in y. Even though numA and numB are now const, they can be given
initial values when a MyClass object is created because the member initialization
syntax is used.

The member initialization syntax is especially useful when you have a member that
is of a class type for which there is no default constructor. To understand why, consider
this slightly different version of MyClass that attempts to store the two integer values
in an object of type IntPair. Because IntPair has no default constructor, this program is
in error and won't compile.

// This program is in error and won't compile.
#include <iostream>
using namespace std;

class IntPair {
public:

int a;

int b;

IntPair(int i, int 3j) : a(i), b(j) { }
Y

class MyClass {
IntPair nums; // Error: no default constructor for IntPair!
public:
// This won't work!
MyClass (int x, int y) {
nums.a = x;
nums.b = y;

int getNumA() { return nums.a; }
int getNumB() { return nums.b; }
Y

int main{()

{
MyClass obl(7, 9), ob2(5, 2);

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 615

cout << "Values in obl are " << obl.getNumB(} <<
" and " << obl.getNuma() << endl;

cout << "Values in ob2 are " << ob2.getNumB (i <<
" and " << ob2.getNuma() << endl;

return 0;

The reason that the program won't compile is that IntPair has only one constructor and
it requires two arguments. However, nums is declared inside MyClass without any
parameters and the values of a and b are set inside MyClass’ constructor. This causes
an error because it implies that a default (i.e., parameterless) constructor is available to
initially create an IntPair object, which is not the case.

To fix this problem, you could add a default constructor to IntPair. However, this
only works if you have access to the source code for the class, which might not always
be the case. A better solution is to use the member initialization syntax, as shown in
this correct version of the program.

// This program is now correct.
#include <iostream>

using namespace std;

class IntPair {
public:
int a;
int b;

IntPair (int i, int j) : al(i), b(3) {1}
Y

class MyClass {
IntPair nums; // now OK
public:
// Initialize nums object using initialization syntax.

MyClass (int X, int y) : nums(x,y) { }

int getNumA() { return nums.a; }
int getNumB() { return nums.b; }

int main()

616 C++: The Complete Reference

MyClass obl(7, 9), ob2(5, 2);

cout << "Values in obl are " << obl.getNumB() <<
" and " << obl.getNumA() << endl;

cout << "Values in ob2 are " << ob2.getNumB () <<
" and " << ob2.getNumA() << endl:

return 0;

Here, nums is given an initial value when a MyClass object is created. Thus, no default
constructor is required.

One last point: Class members are constructed and initialized in the order in which
they are declared in a class, not in the order in which their initializers occur.

Using the asm Keyword

While C++ is a comprehensive and powerful programming language, there are a
few highly specialized situations that it cannot handle. (For example, there is no C++
statement that disables interrupts.) To accommodate special situations, C++ provides
a "trap door" that allows you to drop into assembly code at any time, bypassing the
C++ compiler entirely. This "trap door” is the asm statement. Using asm, you can embed
assembly language directly into your C++ program. This assembly code is compiled
without any modification, and it becomes part of your program’s code at the point at
which the asm statement occurs.

The general form of the asm keyword is shown here:

asm ("op-code");

where op-code is the assembly language instruction that will be embedded in your
program. However, several compilers also allow the following forms of asm:

asm instriction ;
asm instruction newline
asm {

instruction sequence

i

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 617

Here, instruction is any valid assembly language instruction. Because of the
implementation- specific nature of asm, you must check the documentation that
came with your compiler for details.

At the time of this writing, Microsoft's Visual C++ uses __asm for embedding
assembly code. It is otherwise similar to asm.

Here is a simple (and fairly "safe”) example that uses the asm keyword:

#include <iostream>

using namespace std;
int main()
{

asm int 5; // generate intertupt 5

return 0O;

When run under DOS, this program generates an INT 5 instruction, which invokes the
print-screen function.

’Cautio‘n i A thorough working knowledge of assembly language prograniming is required for using
‘ LB\ (i asm statement. If you are not proficient with assembly language, it is best to avoid

using asm because very nasty errors may result.

___| Linkage Specification

In C++ you can specify how a function is linked into your program. By default, functions
are linked as C++ functions. However, by using a linkage specification, you can cause
a function to be linked for a different type of language. The general form of a linkage
specifier is

extern "language” function-prototype
where language denotes the desired language. All C++ compilers support both C and
C++ linkage. Some will also allow linkage specifiers for Fortran, Pascal, or BASIC.

(You will need to check the documentation for your compiler.)
This program causes myCfunc() to be linked as a C function.

#include <iostream>
using namespace std;

618 C++: The Complete Reference

extern "C" void myCfunc () ;

int main()
{
myCfunc () ;

return 0;

// This will link as a C function.
void myCfunc()
{

cout << "This links as a C function.\n";

' Note l The extern keyword is a necessary part of the linkage spccjﬁcaﬁon. Further, the linkage
specifitation must be global; it cannot be used inside of a function.

You can specify more than one function at a time using this form of the linkage
specification:

extern "language” |
prototypes

3

___| Array-Based 1/0

In‘addition to console and file I/O, C++'s stream-based 1/O system allows array-based
I/0. Array-based 1/0 uses a character array as either the input device, the output
device, or both. Array-based 1/0 is performed through normal C++ streams. In fact,
everything you already know about C++ 1/O is applicable to array-based 1/0. The
only thing that makes array-based I/O unique is that the device linked to the stream
is an array of characters. Streams that are linked to character arrays are commonly
referred to as char * streams. To use array-based I/O in your programs, you must
include <strstream>.

Not The character-based stream classes described in this section are deprecated by Standard
ote) , L S
C++. This means that they are still valid, but not recontmended for new code. This bricf

discussion is included for the benzfit of readers working on older code.

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 619

The Array-Based Classes

The array-based /0O classes are istrstream, ostrstream, and strstream. These classes
are used to create input, output, and input/output streams, respectively. Further, the
istrstream class is derived from istream, the ostrstream class is derived from ostream,
and strstream has iostream as a base class. Therefore, all array-based classes are
indirectly derived from ios and have access to the same member functions that the
"normal” I/O classes do.

Creating an Array-Based Output Stream

To perform output to an array, you must link that array to a stream using this ostrstream
constructor:

ostrstream ostr(char *buf, streamsize size, openmode mode=ios::out);

Here, buf is a pointer to the array that will be used to collect characters written to the
stream ostr. The size of the array is passed in the size parameter. By default, the stream
is opened for normal output, but you can OR various other options with it to create the
mode that you need. For example, you might include ios::app to cause output to be
written at the end of any information already contained in the array. For most purposes,
node will be allowed to default.

Once you have opened an array-based output stream, all output to that stream is
put into the array. However, no output will be written outside the bounds of the array.
Attempting to do so will result in an error.

Here is a simple program that demonstrates an array-based output stream.

#include <strstream>
¥include <iostream>

using namespace std;

int main()
{
char str[80];

ostrstream outs(str, sizeof(sctr));

outs << "C++ array-based I/0. ";

outs << 1024 << hex << " ";

outs.setf (ios::showbase) ;

outs << 100 << ' ' << 99.789 << ends;

620 C++: The Complete Reference

cout << str; // display string on console

return 0;

This program displays the following:

C++ array-based I/0. 1024 0x64 99.789

Keep in mind that outs is a stream like any other stream; it has the same capabilities
as any other type of stream that you have seen earlier. The only difference is that the
device that it is linked to is a character array. Because outs is a stream, manipulators
like hex and ends are perfectly valid. ostream member functions, such as setf(), are
also available for use.

This program manually null terminates the array by using the ends manipulator.
Whether the array will be automatically null terminated or not depends on the
implementation, so it is best to perform null termination manually if it is important
to your application.

You can determine how many characters are in the output array by calling the
pcount() member function. It has this prototype:

streamsize pcount();

The number returned by pcount() also includes the null terminator, if it exists.
The following program demonstrates pcount(). It reports that outs contains
18 characters: 17 characters plus the null terminator.

#include <strstream:-
#include <iostream>
using namespace std:

int main()
{
char str([80];

ostrstream outs(str, sizeof(str));
outs << "abcdefg *;

outs << 27 << " " << 890.23;
outs << ends; // null terminate

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 621

cout << outs.pcount(); // display how many chars in outs
cout << ' " << str;

return 0;

Using an Array as Input

To link an input stream to an array, use this istrstream constructor:
istrstream istr(const char *buf);

Here, bufis a pointer to the array that will be used as a source of characters each time
input is performed on the stream istr. The contents of the array pointed to by buf must
be null terminated. However, the null terminator is never read from the array.

Here is a sample program that uses a string as input.

#include <iostream>
#include <strstream>
using namespace std;

int main()

{
char s[] = "10 Hello 0Ox75 42 .73 OK";

istrstream ins(s);

int 1i;
char stri{80];
float £;

// reading: 10 Hello
ins >> i;
ing »>> str;

cout << i << " " << str << endl;

// reading 0x75 42.73 OK
ins >> hex >> i;

622

C++: The Complete Reference

ins >> f;
ins >> str;

cout << hex << i «< " " << f << " " << gty

return 0;

If you want only part of a string to be used for input, use this form of the istrstream
constructor:

istrstream istr(const char *buf, streamsize size);

Here, only the first size elements of the array pointed to by buf will be used. This string
need not be null terminated, since it is the value of size that determines the size of
the string.

Streams linked to memory behave just like those linked to other devices. For example,
the following program demonstrates how the contents of any text array can be read.
When the end of the array (same as end-of-file) is reached, ins will be false.

/* This program shows how tc read the contents of any
array that contains text. */

#include <iostream>

#include <strstream>

using namespace std:;

int main()
char s[] = "10.23 this is a test <<>><<?!\n";
istrstream ins(g);
char ch;

/* This will read and display the contents
of any text array. */
ins.unsetf (ios::skipws); 7~/

{ // false when end of array is reached

don't skip spaces

while (ins)
ins >> ch;
cout << ch;

Chapter 23:

return 0;

Input/Output Array-Based Streams

To create an array-based stream that can perform both input and output, use this
strstream constructor function:

Namespaces, Conversion Functions, and Other Advanced Topics

strstream jostr{char *buf, streamsize size, openmode miode = 1os:in | ios::out);

Here, buf points to the string that will be used for 1/O operations. The value of size
specifies the size of the array. The value of mode determines how the stream iostr
operates. For normal input/output operations, mode will be iosz:in | ios::out. For
input, the array must be null terminated.
Here is a program that uses an array to perform both input and output.

7

{

7/

Perform both input and output.

#include <iostreamn>
#include <strstream>

using namespace std;

int main()

char iostr[80];

strstream strio(iostr, sizeof(iostr), 1os:

int a, b;
char str{80];

strio << "10 20 testing ":

strio »> a »> b >> str;

:in | ios:

cout << a << " " << b << " " << gtr << endl;

return 0;

This program first writes 10 20 testing to the array and then reads it back in again.

623

624 C++: The Complete Reference

Using Dynamic Arrays
In the preceding examples, when you linked a stream to an output array, the array and
its size were passed to the ostrstream constructor. This approach is fine as long as you
know the maximum number of characters that you will be outputting to the array.
However, what if you don't know how large the output arrayv needs to be? The solution
to this problem is to use a second form of the ostrstream constructor, shown here:

ostrstream();

When this constructor is used, ostrstream creates and maintains a dynamically
allocated array, which automatically grows in length to accommodate the output
that it must store.

To access the dynamically allocated array, you must use a second function, called
str(), which has this prototype:

char *str();

This function "freezes” the array and returns a pointer to it. You use the pointer returned
by str() to access the dynamic array as a string. Once a dynamic array is frozen, it
cannot be used for output again unless its is unfrozen (see below). Therefore, you will
not want to freeze the array until you are through outputting characters to it.

Here is a program that uses a dynamic output array.

#include <strstream>
#include <iostream>
using namespace std;

int main()
{

char *p;

ostrstream outs; // dynamically allocate array
outs << "C++ array-based I/0 ";

outs << -10 << hex << " ";
outs.setf(ios::showbase);

outs << 100 << ends;

p = outs.str(); // Freeze dynamic buffer and return
/7 pointer to it.

cout << p;

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 625

return 0;

You can also use dynamic I/O arrays with the strstream class, which can perform
both input and output on an array.

It is possible to freeze or unfreeze a dynamic array by caliing the freeze() function.
Its prototype is shown here:

void freeze(bool action = true);

If nction is true, the array is frozen. If action is false, the array is unfrozen.

Using Binary 1/0 with Array-Based Streams

Remember that array-based 1/0 has all of the functionality and capability of "normal”
[/0. Therefore, arrays linked to array-based streams can also contain binary information.
When reading binary information, vou may need to use the eof() function to determine
when the end of the array has been reached. For example, the following program shows
how to read the contents of any array—binary or text—using the function get().

#include <iostream>
#include <strstream>

using namespace std;
int main()
{
char *p = "this 1s a test\1\2.3\4\5\6\7";
istrstream ins(p);
char ch;
// read and display binary info
while (!ins.eof()) {

ins.get (ch);
cout << hex << (int) ch <<~ ;

return 0;

[n this example, the values formed by \1\2\3, and so on are nonprinting values.

626

C++: The Complete Reference

To output binary characters, use the put() function. If you need to read buffers of
binary data, you can use the read() member function. To write buffers of binary data,
use the write() function.

Summarizing the Differences
Between C and C++

For the most part, Standard C++ is a superset of Standard C, and virtually all C
programs are also C++ programs. However, a few differences do exist, and these have
been discussed throughout Parts One and Two of this book. The most important are
summarized here.

In C++, local variables can be declared anywhere within a block. In C, they must
be declared at the start of a block, before any "action” statements occur. (C99 has removed
this restriction.)

In C, a function declared like

int £();

says nothing about any parameters to that function. That is, when there is nothing
specified between the parentheses following the function's name, in C this n.eans that
nothing is being stated, one way or the other, about any parameters to that function.
It might have parameters, or it might not. However, in C++, a function declaration like
this means that the function does not have parameters. That is, in C++, these two
declarations are equivalent:

int f£();
int f(void);

In C++, void in a parameter list is optional. Many C++ programmers include void as
a means of making it completely clear to anyone reading the program that a function
does not have any parameters, but this is technically unnecessary.

In C++, all functions must be prototyped. This is an option in C (although good
programming practice suggests full prototyping be used in a C program).

A small but potentially important difference between C and C++ is that in C,
a character constant is automatically elevated to an integer. In C++, it is not.

In C, itis not an error to declare a global variable several times, even though this is
bad programming practice. In C++, it is an error.

In C, an identifier will have at least 31 significant characters. In C++, all characters
are significant. However, from a practical point of view, extremely long identifiers are
unwieldy and seldom needed.

Chapter 23: Namespaces. Conversion Functions, and Other Advanced Topics

In C, although it is unusual, you can call main() from within your program. This is
not allowed by C++.

In C, you cannot take the address of a register variable. In C++, this is allowed.

InC, if no type specifier is present in some types of declaration statements, the type
int is assumed. This "default-to-int" rule no longer applies to C++. (C99 also drops the
"default-to-int” rule.)

627

